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Abstract

The heat transfer characteristics of a steady three-dimensional viscous fluid flow driven by the bidirectional stretching of an elastic
surface are investigated. The hydrodynamic part of the problem is determined by the ratio between the stretching rates in the two lateral
directions. The prescribed temperature or heat transfer rate varies along the surface. A heat source is included in the thermal boundary
layer equation, which transforms into an ordinary differential equation by means of a similarity transformation. The numerical results
show that the principal effect of the variable surface conditions is to thicken the thermal boundary layer when the temperature or heat
transfer rate decreases with the distance from the center of sheet. The boundary layer thickness is correspondingly reduced if the sheet
temperature or heat transfer rate increases in one or both of the lateral directions.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Thermal boundary layers; Stretched surfaces; Variable surface temperature; Variable surface heat flux; Internal heat generation
1. Introduction

The analysis of boundary layer flows of viscous fluids
driven by a moving surface rather than by an external ‘free
stream’ dates back to the pioneering investigation by Saki-
adis [1]. He considered the steady two-dimensional bound-
ary layer developing along a constantly moving flat plate.
Even though the momentum boundary layer equation for
the Sakiadis-problem is identical to the classical Blasius
boundary layer equation, the different boundary conditions
make the resulting similarity solutions rather different. This
difference is brought about by the substantial entrainment
of ambient fluid, which makes the Sakiadis boundary layer
thicker than the Blasius boundary layer.

Surface-driven boundary layers are of practical impor-
tance for instance in extrusion processes. When a polymer
sheet is drawn from a slit, the sheet is often being stretched.
Since the sheet speed near the slit is low, the local sheet
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velocity can be approximated as a linear function of the
distance from the slit. This fact probably motivated Crane
[2] to investigate the viscous boundary layer flow along a
linearly stretched elastic sheet, for which he derived an
explicit analytical solution for the fluid motion. Since the
mechanical properties of the final product depend crucially
on the rate of cooling or heating along the surface while
being stretched, Gupta and Gupta [3], Vleggaar [4] and
Dutta et al. [5] examined the heat transfer characteristics
of the boundary layer flow considered by Crane [2] for
cases with constant wall temperature [3,4] and constant
wall heat flux [5]. The former problem was subsequently
extended by Carragher and Crane [6] and Grubka and
Bobba [7] to boundary layer flow over linearly stretching
sheets which exhibit a power-law variation of the sheet
temperature.

The stretching of a filament or sheet imparts a unidirec-
tional orientation on the elastic material, which in turn
affects the mechanical properties of the resulting product.
The previous studies [1–7] were all limited to two-dimen-
sional boundary layer problems arising from a unidirectional
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Fig. 1. Physical configuration and coordinate system.

Nomenclature

a, b lateral stretching rates (s�1)
A, B constants of proportionality
C constant in Eq. (16)
cp specific heat at constant pressure

1F1 confluent hypergeometric function
f0, g0 dimensionless velocity components
m, n dimensionless parameters in confluent hyper-

geometric function
Pr Prandtl number, t/j
q coefficient of volumetric heat source
r, s power indices
T dimensional temperature
u, v, w dimensional velocity components
x, y, z dimensional coordinates

Greek symbols

a stretching ratio, b/a
b dimensionless strength of source or sink, q/qcpa

g similarity variable, (a/t)1/2z

h dimensionless temperature (PST)
j thermal diffusivity
k thermal conductivity,
l dynamic viscosity
t kinematic viscosity, l/q
q density
/ dimensionless temperature (PHF)

Subscripts
w wall value
1 property at infinity
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stretching. Wang [8], however, analyzed the three-dimen-
sional flow of viscous fluids caused by the stretching of an
elastic flat surface or membrane in two lateral dimensions.
In the general case with different stretching rates in the two
perpendicular directions, Wang [8] resorted to direct numer-
ical integration of the resulting boundary value problem,
whereas Ariel [9] more recently demonstrated that this prob-
lem also admits solutions in terms of series of exponentially
decaying functions. In this bidirectional stretching sheet
problem, the ratio a between the stretching rates in the two
lateral directions becomes an essential parameter. While
a = 1 signifies axisymmetric stretching, Crane’s two-dimen-
sional case [2] is recovered in the limiting case a = 0.

The thermal boundary layer problem accompanying
Wang’s hydromechanical problem [8] was investigated by
Laha et al. [10] both for uniform surface temperature and
uniform surface heat flux. For the isothermal sheet, they
observed that, for given Prandtl number Pr, the tempera-
ture at a point decreased with increase in the stretching
ratio a. Similarly, for fixed Pr, the magnitude of the excess
sheet temperature over the ambient temperature decreased
with increasing a for a given uniform heat flux.

In practical situations, the thermal characteristics may
vary along the sheet, for instance as considered by Carra-
gher and Crane [6] and Grubka and Bobba [7] in the
two-dimensional case, i.e. unidirectional stretching. The
purpose of the work reported in the present paper is to
examine the heat transfer characteristics associated with
the three-dimensional hydrodynamical flow considered by
Wang [8] and Ariel [9] with either prescribed variable sur-
face temperature (PST) or prescribed variable surface heat
flux (PHF). The present analysis also includes the presence
of a temperature-dependent internal heat source (or sink),
which was not taken into account by Laha et al. [10].
2. Problem formulation

We consider the three-dimensional steady boundary
layer flow of a viscous incompressible fluid driven by an
elastic flat surface in the plane at z = 0, as shown in
Fig. 1. The surface is stretched uniformly in both horizon-
tal directions such that the surface velocity components are
ax and by in the x- and y-directions, respectively. Here, a
and b are the two constant stretching rates, both being
positive and with dimension time�1. This three-dimen-
sional flow problem, which results from the bidirectional
stretching, is rather different from the two-dimensional
momentum boundary layer problem formulated by Sakia-
dis [1] for flow driven by a continuously moving sheet
emerging from a slit at x = 0.

The bidirectional stretching sheet problem was first for-
mulated by Wang [8] who introduced a similarity transfor-
mation to recast the governing partial differential equations
into a set of ordinary differential equations (ODEs). Fol-
lowing Wang [8], the three velocity components (u, v, w)
in the Cartesian coordinate system are transformed accord-
ing to
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u ¼ axf 0ðgÞ; v ¼ ayg0ðgÞ; w ¼ �ðatÞ1=2ðf þ gÞ; ð1Þ
where g = (a/t)1/2 z is the similarity variable and t is the
kinematic viscosity of the fluid. The continuity equation
is, of course, satisfied by Eq. (1), provided that the minus
sign is included in the transformation of the velocity com-
ponent w perpendicular to the sheet. This minus sign,
which implies that the ambient fluid is driven towards sheet,
is absent in the papers by Wang [8] and Ariel [9]. The
appropriate boundary conditions for the velocity compo-
nents are

u ¼ ax; v ¼ by; w ¼ 0 at z ¼ 0 ð2Þ
and

u! 0; v! 0 as z!1 ð3Þ
at the sheet z = 0 and outside the momentum boundary
layer, respectively.

After substituting the transformation (1) into the
momentum boundary layer equations and boundary condi-
tions, we obtain

f 000 þ ðf þ gÞf 00 � f 02 ¼ 0 ð4Þ
g000 þ ðf þ gÞg00 � g02 ¼ 0 ð5Þ

and

f ð0Þ þ gð0Þ ¼ 0; f 0ð0Þ ¼ 1; g0ð0Þ ¼ b=a � a;

f 0ð1Þ ¼ 0; g0ð1Þ ¼ 0; ð6Þ

where the primes denote differentiation with respect to g
and a is the stretching ratio. Wang [8] pointed out that,
without loss of generality, the impermeability condition
f(0) + g(0) = 0 can be replaced by f(0) = g(0) = 0. In the
limit as a ? 0, this bidirectional stretching sheet problem
degenerates to the unidirectional stretching sheet problem
solved analytically by Crane [2], i.e. f = 1 � e�g and g = 0.

The temperature field adjacent to the bidirectional
stretching sheet is governed by the thermal boundary layer
equation:

u
oT
ox
þ v

oT
oy
þ w

oT
oz
¼ j

o
2T

oz2
þ q

qcp

ðT � T1Þ; ð7Þ

where the last term represents a temperature-dependent
heat source (q > 0) or sink (q < 0). Laha et al. [10] consid-
ered the same problem with q = 0. They studied both iso-
thermal sheets, i.e. with uniform temperature, and sheets
with a uniform heat flux. In the present investigation, either
the temperature or the heat flux is allowed to vary with the
distance from the origin as

ðiÞPST case :T ¼ T wðx; yÞ ¼ T1 þ Axrys at z ¼ 0;

T ! T1 as z!1 ð8Þ

ðiiÞPHF case :�k
oT
oz
¼ Bxrys at z¼ 0; T ! T1 as z!1;

ð9Þ
where k is thermal conductivity of the fluid, T1 is the con-
stant temperature outside the thermal boundary layer, and
A and B are positive constants. The power indices r and s

determine how the temperature or the heat flux at the sheet
varies in the (x,y)-plane. The thermal boundary conditions
(8) and (9) are by far more general than those used by Laha
et al. [10]. In fact, their isothermal and uniform heat flux
boundary conditions are obtained as special cases of (8)
and (9), respectively, if r = s = 0.

For the PST case, we introduce the dimensionless
temperature

hðgÞ ¼ T ðx; y; zÞ � T1
T wðx; yÞ � T1

; ð10Þ

which transforms the thermal energy Eq. (7) into

h00 þ Prðf þ gÞh0 þ Prðb� rf 0 � sg0Þh ¼ 0; ð11Þ
subjected to

hð0Þ ¼ 1; hð1Þ ¼ 0; ð12Þ

where Pr = t/j is the Prandtl number and b � q/qcpa is the
internal heat parameter. For the PHF case, the local tem-
perature T(x,y,z) relates to the dimensionless temperature
/(g) as

T ðx; y; zÞ � T1 ¼
B
k

ffiffiffi
t
a

r
xrys/ðgÞ: ð13Þ

The thermal boundary layer equation remains exactly as
before, i.e. with / replacing h in Eq. (11), as pointed out
by Laha et al. [10]. The corresponding boundary conditions
are different, however, namely

/0ð0Þ ¼ �1;/ð1Þ ¼ 0: ð14Þ
3. Some special cases

The hydrodynamic part of the present problem is inde-
pendent of the accompanying thermal problem. The
three-dimensional boundary layer problem was first formu-
lated and solved numerically by Wang [8], whereas Ariel [9]
reconsidered the same problem and derived accurate series
solutions. Let us only briefly recall that the bidirectional
problem considered by Wang [8] reduces to the unidirec-
tional stretching problem due to Crane [2] for a = 0. Wang
observed that both f and f0 were reduced with gradually
increasing stretching rate ratio a, whereas jf00(0)j increased
due to the thinning of the momentum boundary layer. In
spite of the reduction of f (1) with increasing a, the sum
f (1) + g (1) tended to increase monotonically from 1.0
for a = 0 to 1.50305 for a = 1. This essential observation,
which was not addressed by Wang [8], implies that the
ambient flow rate entrained perpendicular towards the
sheet is about 50% higher with axisymmetric stretching
(a = 1) than with unidirectional stretching (a = 0).

3.1. Special case a = 0

In the case of unidirectional stretching, the fluid motion
is solely in the (x,z)-plane, i.e. g and g0 in Eq. (1) are both
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zero. This special case is equivalent with the heat transfer
problem considered by Carragher and Crane [6] and Grub-
ka and Bobba [7], in which the temperature difference
between the sheet and its surroundings was proportional
to a power of the distance from the slit through which
the sheet emerged. The temperature field can be expressed
in terms of confluent hypergeometric functions 1F1(m; n; x)

ðPSTÞhðgÞ ¼ e�ðmþnÞg 1F 1ðmþ n� r; 1þ 2n;�Pre�gÞ
1F 1ðmþ n� r; 1þ 2n;�PrÞ ; ð15Þ

where m = Pr/2 and n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr2 � 4bPr

p
=2. Similarly, the

solution for the corresponding case in which the heat flux
at the sheet exhibits a power-law variation in x becomes

ðPHFÞ/ðgÞ ¼ e�ðmþnÞg
1F 1ðmþ n� r; 1þ 2n;�Pre�gÞ=C

ð16Þ

where the constant denominator is given as

C ¼
�
ðmþ nÞ1F 1ðmþ n� r; 1þ 2n;�PrÞ

�Pr
mþ n� r

1þ 2n 1F 1ðmþ n� r þ 1; 2þ 2n;�PrÞ
�
:

3.2. Special case r = s = 0 and b = 0

With both r and s equal to zero and b = 0 (no heat source
or sink), the thermal surface conditions defined in Eqs. (8)
and (9) simplify to Tw = T1 + A and �koT/oz = B, respec-
tively, i.e. constant surface temperature and constant surface
heat flux. This is identical to the thermal boundary layer
problem studied by Laha et al. [10]. They presented numeri-
cal solutions of this two-parameter problem for some differ-
ent values of the stretching ratio in the range 0 6 a 6 1. Their
results for the lowest Prandtl number considered (Pr = 0.1)
are, however, not reliable since they used a by far too short
integration domain in view of the excessive thickening of
thermal boundary layers at low Prandtl numbers.

3.3. Special case a = 1, b = 0 and Pr = 1

Wang [8] observed that the flow is axisymmetric when
a = 1, i.e. when the stretching rate is the same in the x-
Table 1
Numerical results of the hydrodynamical problem

f00(0)

Wang [8] a = 0 �1
Present study �1
Wang [8] a = 0.25 �1.048813
Present study �1.048813
Wang [8] a = 0.5 �1.093097
Present study �1.093096
Wang [8] a = 0.75 �1.134485
Present study �1.134486
Wang [8] a = 1 �1.173720
Present study �1.173721

Present results are compared with data from Table 1 in Wang [8].
and y-directions. This implies that f(g) = g(g) and the
hydromechanical problem (2)–(6) simplifies considerably.
In this case, it can also be shown that the solution f0(g)
for the lateral fluid velocity also solves the thermal energy
Eq. (11) subject to the boundary conditions (12) if b = 0,
Pr = 1, and r + s = 1. This implies that the numerical solu-
tion of the hydrodynamic problem for a = 1 is also a solu-
tion of the temperature field for this particular parameter
combination. It is particularly noteworthy that only the
sum r + s matters and not the individual values of r and s.
4. Numerical method

The ODE (11) subject to either Eq. (12) or Eq. (13)
forms a two-point boundary value problem (BVP) on the
semi-infinite domain [0,1) in the four independent param-
eters Pr, r, s, and b. To the authors’ knowledge, closed-
form solutions for the dimensionless temperature profiles
h(g) and /(g) are not available. We therefore resort to
numerical integration. The entire BVP, i.e. including the
hydrodynamic part, consists of eight first-order ODEs with
five boundary conditions (BCs) at the stretching surface
and three at infinity. For the PST case Eqs. (4), (5) and
(11) are first integrated numerically using a fifth-order
Runge–Kutta scheme from zero to infinity with five pre-
scribed values f(0) = g(0) = f0(0) � 1 = g0(0) � a = h(0) �
1 = 0 and three trial values f00(0), g00(0) and h0(0). In the
PHF case, the five prescribed boundary conditions are
f(0) = g(0) = f0(0) � 1 = g0(0) � a = /0(0) + 1 = 0, whereas
the three guessed values become f00(0), g00(0) and /(0). With
arbitrary trial values, however, the integrated solutions will
in general not satisfy the far-field boundary conditions
f0(1) = 0, g0(1) = 0 and either h(1) = 0 or /(1) = 0 for
the PST and the PHF case, respectively. To this end a New-
ton–Raphson based scheme is employed to adjust the three
trial values such that the integrated solutions eventually
match the required far-field boundary conditions. The
Newton–Raphson process is continued until the sum of
the squared errors at the far-field boundary is lower than
10�12. Wang [8] found that it was sufficient to integrate
the ODEs of the hydrodynamic part of the BVP up to a
maximum value of g1 = 10. Since the thickness of the ther-
mal boundary layer roughly varies inversely with the
g00(0) f(1) g(1)

0 1 0
0 1 0
�0.194564 0.907075 0.257986
�0.194565 0.907067 0.257966
�0.465205 0.842360 0.451671
�0.465206 0.842361 0.451663
�0.794622 0.792308 0.612049
�0.794619 0.792293 0.612128
�1.173720 0.751527 0.751527
�1.173721 0.751494 0.751494
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Fig. 2. Temperature profiles h(g) for selected values of the stretching rate
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5 6

3, −2, −1, 0, 1, 2, 3−=r

η

θ

Fig. 3a. PST: Temperature profile h(g) for selected r with Pr = 1, a = 0.5,
s = 0 and b = 0.
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Fig. 3b. PST: Temperature profiles h(g) for selected s with Pr = 1, a = 0.5,
r = 0 and b = 0.

Table 2
Temperature gradient at the surface h0(0) for selected values of r, s and a with

Stretching ratio r = 0, s = 0 r = �2, s = 0

a = 0.25 �0.665933 0.554512
a = 0.5 �0.735334 0.308578
a = 0.75 �0.796472 0.135471
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square root of Pr, a substantially larger integration domain
is required at the lowest Prandtl numbers. To demonstrate
the accuracy of the integration scheme, the present results
are compared with data from Wang [8] in Table 1.
5. Results and discussion

The present investigation is concerned with the heat
transfer characteristics accompanying the three-dimen-
sional flow and in particular the influence of non-uniform
sheet conditions (represented herein by the power indices
r and s) and the potential role of a heat source or sink
(b 6¼ 0). Let us first, however, examine how the stretching
ratio a, i.e. the only hydrodynamic parameter, affects the
thermal boundary layer for a specific combination of the
four thermal parameters Pr, r, s, and b. The dimensionless
temperature profiles h(g) presented in Fig. 2 show that the
temperature decreases with increasing values of the stretch-
ing ratio a. These results are in qualitative agreement with
the temperature profiles shown by Laha et al. [10] for an
isothermal sheet (r = s = 0) for Pr = 0.5 and with b = 0.
The observed thinning of the thermal boundary layer with
higher values of a is a consequence of the higher entrain-
ment of cooler fluid from the ambient.

The power indices r and s control the non-uniformity of
the sheet temperature in the prescribed sheet temperature
case. The temperature profiles in Fig. 3a show the effect
of r for given s (s = 0), while Fig. 3b shows how s affects
the temperature when the sheet temperature is uniform in
the x-direction (r = 0). It is readily observed that the
non-uniformity of the sheet temperature has a significant
influence on the temperature profiles and both increasing
r and s values tend to reduce the temperature and make
the thermal boundary layer thinner. The temperature pro-
files computed by Grubka and Bobba [7] for unidirectional
stretching with a power-law variation of the sheet temper-
ature and Pr = 0.72 show exactly the same behavior as the
present results in Fig. 3a for a bidirectional stretching sheet
with a prescribed sheet temperature which varies as xr but
is independent of y.

It is noteworthy that the present results for bidirectional
stretching a = 0.5 show a more pronounced influence of r

than of s. This is not at all surprising since r and s contrib-
ute to the term �Pr(rf0 + sg0) h in the thermal boundary
layer Eq. (11) and f0 is roughly twice as large as g0 for this
particular a-value. From Fig. 3a we observe that the tem-
perature rises above the sheet temperature Tw before it
decays to the ambient temperature T1 for r = �3 and
r = �2. In these cases the sheet temperature becomes lower
Pr = 1 and b = 0

r = 2, s = 0 r = 0, s = �2 r = 0, s = 2

�1.364890 �0.413111 �0.883125
�1.395356 �0.263381 �1.106491
�1.425038 �0.126679 �1.292003
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Fig. 5. Temperature profiles h(g) for selected b with Pr = 1, a = 0.5, r = 1
and s = 1.

Table 3
h0(0) and /(0) for selected values of b and Pr with a = 0.5, r = 1 and s = 1

h0(0) for PST

b = �0.2 b = 0 b = 0.

Pr = 1 �1.348064 �1.255781 �1.148
Pr = 5 �3.33039 �3.170979 �3.002
Pr = 10 �4.812149 �4.597141 �4.371
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as the distance x from the origin increases and the heat flux
is therefore directed from the fluid to the sheet, rather than
in the common direction from the sheet to the fluid (as for
r-values >�1). This peculiar phenomenon can be explained
by means of the governing ODE (11) with b = 0. Let us set
r = s = �1 and integrate the equation once after a slight
rearrangement of the terms. By use of the boundary condi-
tions (12) and the auxiliary requirement that h0 should van-
ish as g ?1, we arrive at the following integral:

h0 þ Prðf þ gÞh ¼ 0 ð17Þ

which is valid for arbitrary values of the stretching ratio a.
Since f(0) and g(0) both vanish at the sheet, Eq. (17) implies
that h0(0) = 0. Physically this means that if the sheet tem-
perature varies as Tw = T1 + Ax�1y�1, there is no heat
transfer between the sheet and the fluid. Results for the
temperature gradient at the sheet h0(0) are provided in
Table 2. Only for the parameter combination r = �2 and
s = 0 is the heat flow from the fluid towards the sheet,
i.e. h0(0) > 0. We have already shown that h0(0) = 0 if
r = s = �1. Since f0 > g0 for all values of a 6 1, the temper-
ature gradient h0(0) becomes positive for r = �2 and s = 0
and negative for r = 0 and s = �2.

Some sample results for the case with prescribed heat
transfer at the sheet are shown in Fig. 4. Here, the temper-
ature and, in particular, the sheet temperature /(0)
decrease with r and s. Inspection of Eq. (11) shows that
/00(0) = 0 if r = s = 0. Thus, the temperature profiles in
Fig. 4a exhibit an inflection point for r < 0 and the profiles
in Fig. 4b similarly exhibit an inflection point for negative
s-values. In these cases the largest temperature gradient is
not at the sheet but somewhat above the surface. It might
be interesting to observe that although the integrated
thermal energy Eq. (17) is formally valid also in the PHT
case, no solution exist which satisfies the boundary condi-
tion /0(0) = �1. This proves the non-existence of solutions
for the prescribed heat flux case for r = s = �1.

Finally, the influence of a heat source or sink on the
temperature field is illustrated in Fig. 5, which shows tem-
perature profiles calculated for the same stretching ratio a
as in Figs. 3 and 4 and for a specific combination of the
thermal parameters. As expected, the temperature rises
with increasing source strength b > 0 whereas a heat sink
b < 0 tends to lower the temperature. The data provided
in Table 3 show that the heat transfer rate �h0(0) reduces
with increasing b-values. This is a direct consequence of
the thickening of the thermal boundary layer with b and
the results in Table 3 suggest that this effect prevails for
/(0) for PHF

2 b = �0.2 b = 0 b = 0.2

932 0.741805 0.796317 0.870355
380 0.300265 0.315360 0.333069
512 0.207807 0.217527 0.228754
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all Prandtl numbers. In cases with prescribed heat flux at
the sheet, a heat source (sink) tends to enhance (reduce)
the sheet temperature /(0).

6. Concluding remarks

The steady three-dimensional thermal boundary layer
along a bidirectional stretching surface has been studied.
Two different cases have been considered: (i) prescribed
surface temperature and (ii) prescribed surface heat flux.
The focus of the investigation has been on the effects of
variable surface conditions. The present work is therefore
a generalization of the earlier study by Laha et al. [10]
who considered uniform thermal conditions at the surface.
In addition, the present analysis also includes an internal
heat source or sink.

It has been observed that the variation of the sheet tem-
perature has a substantial effect on the thermal boundary
layer. This effect is most pronounced when sheet tempera-
ture varies in the direction of the highest stretching rate. If
the temperature decreases along the direction of stretching,
the location of maximum temperature may even be offset
from the surface. When the heat transfer rate at the surface
varies in the lateral directions, the resulting sheet tempera-
ture is substantially affected.
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